13 research outputs found

    A catalogue of the Sparta Museum /

    No full text
    Includes bibliographical references and index.Mode of access: Internet

    Cytogenetic genotype-phenotype studies: improving genotyping, phenotyping and data storage.

    No full text
    Item does not contain fulltextHigh-resolution molecular cytogenetic techniques such as genomic array CGH and MLPA detect submicroscopic chromosome aberrations in patients with unexplained mental retardation. These techniques rapidly change the practice of cytogenetic testing. Additionally, these techniques may improve genotype-phenotype studies of patients with microscopically visible chromosome aberrations, such as Wolf-Hirschhorn syndrome, 18q deletion syndrome and 1p36 deletion syndrome. In order to make the most of high-resolution karyotyping, a similar accuracy of phenotyping is needed to allow researchers and clinicians to make optimal use of the recent advances. International agreements on phenotype nomenclature and the use of computerized 3D face surface models are examples of such improvements in the practice of phenotyping patients with chromosomal anomalies. The combination of high-resolution cytogenetic techniques, a comprehensive, systematic system for phenotyping and optimal data storage will facilitate advances in genotype-phenotype studies and a further deconstruction of chromosomal syndromes. As a result, critical regions or single genes can be determined to be responsible for specific features and malformations

    Geographic and host distribution of haemosporidian parasite lineages from birds of the family Turdidae

    No full text
    Background: Haemosporidians (Apicomplexa, Protista) are obligate heteroxenous parasites of vertebrates and blood-sucking dipteran insects. Avian haemosporidians comprise more than 250 species traditionally classified into four genera, Plasmodium, Haemoproteus, Leucocytozoon, and Fallisia. However, analyses of the mitochondrial CytB gene revealed a vast variety of lineages not yet linked to morphospecies. This study aimed to analyse and discuss the data of haemosporidian lineages isolated from birds of the family Turdidae, to visualise host and geographic distribution using DNA haplotype networks and to suggest directions for taxonomy research on parasite species. Methods: Haemosporidian CytB sequence data from 350 thrushes were analysed for the present study and complemented with CytB data of avian haemosporidians gathered from Genbank and MalAvi database. Maximum Likelihood trees were calculated to identify clades featuring lineages isolated from Turdidae species. For each clade, DNA haplotype networks were calculated and provided with information on host and geographic distribution. Results: In species of the Turdidae, this study identified 82 Plasmodium, 37 Haemoproteus, and 119 Leucocytozoon lineages, 68, 28, and 112 of which are mainly found in this host group. Most of these lineages cluster in the clades, which are shown as DNA haplotype networks. The lineages of the Leucocytozoon clades were almost exclusively isolated from thrushes and usually were restricted to one host genus, whereas the Plasmodium and Haemoproteus networks featured multiple lineages also recovered from other passeriform and non-passeriform birds. Conclusion: This study represents the first attempt to summarise information on the haemosporidian parasite lineages of a whole bird family. The analyses allowed the identification of numerous groups of related lineages, which have not been linked to morphologically defined species yet, and they revealed several cases in which CytB lineages were probably assigned to the wrong morphospecies. These taxonomic issues are addressed by comparing distributional patterns of the CytB lineages with data from the original species descriptions and further literature. The authors also discuss the availability of sequence data and emphasise that MalAvi database should be considered an extremely valuable addition to GenBank, but not a replacement
    corecore